CRYPTOSPORIDIOSIS IN SULAIMANI PEDIATRIC TEACHING HOSPITAL AND COMPARISON OF DIFFERENT DIAGNOSTIC METHODS FOR ITS DETECTION

Fatinah Mohammed Ali
Department of Pharmacy, Sulaimani Polytechnic University,
Technical Institute of Sulaimani, Sulaimani, Iraq

Dr. Shahnaz Abdul Kader Ali
Department of Microbiology, School of Medicine, University of Sulaimani

Abstract
The present study aimed to investigate the presence and prevalence of Cryptosporidium among children in Sulaimani Pediatric Teaching Hospital and to determine the best method for its diagnosis. The study started from the 1st of Jun. to the 1st of Sept. 2012. Two hundred fifty stool samples were collected from children of 6 month to 12 years of age from both genders who attended the hospital. Stool samples were inspected by modified acid-fast stain as a standard method, direct wet mount, Crypto-Strips method and enzyme linked immunosorbant assay (ELISA). Modified Ziehl-Neelsen technique revealed 38 (15.2%) positive cases for Cryptosporidium oocysts, of 22 males and 16 females, 4-6 years of age group was more susceptible to infection with Cryptosporidium and highly significant relationship was found between the genders and between different age groups of infection with a highly significant difference between rural and urban area.
The highest rate of infection was found in the soft type of stool samples with a significant difference between them.
The prevalence of Cryptosporidium was 13.6% by using direct wet mount, 6.8%, for ELISA and 4.4% by Crypto-Strips method in comparison with MZN method.
It is concluded that cryptosporidiosis found to be endemic in Sulaimani city for the first time and the modified acid-fast stain was the most reliable technique for its diagnosis.

Keywords: Stool samples, Cryptosporidium oocysts, Sulaimani, Iraq
1- Introduction

Cryptosporidiosis is a zoonotic gastrointestinal disease, caused by protozoa of the genus Cryptosporidium within the phylum Apicomplexa. (Chen et al., 2002).

It causes clinical disease in both humans and animals; species names are based primarily on the animal species serving as hosts (Xiao et al., 2004). Clinical illness is characterized by watery diarrhea, which can be accompanied by abdominal cramps, loss of appetite, low-grade fever, nausea, vomiting, and weight loss; however, asymptomatic infection occurs frequently (Hellard et al., 2000). Cryptosporidium can also cause an opportunistic infection in human immunodeficiency virus (HIV) infected patients who might experience life-threatening infection with profuse, watery, cholera-like diarrhea (Kaplan et al., 2000).

The infection is transmitted by the fecal-oral route and results from the ingestion of Cryptosporidium oocysts through the consumption of fecally contaminated food, water or through direct person-to-person or animal-to-person contact. The oocysts are infectious immediately as soon as being excreted in feces. The infectious dose is low; feeding studies have demonstrated that the ingestion of as few as 10-30 oocysts can cause infection in healthy persons. Infected persons have been reported to shed 10^8-10^9 oocysts in a single bowel movement and to excrete oocysts for up to 50 days after cessation of diarrhea (Okhuysen et al., 1999).

The prevalence of Cryptosporidium in developing countries varies between 4-30%, while in developed countries ranges from 0.6 to 20% (Zu et al., 1992 b; Das et al., 1993). In Iraq, Mahdi et al. (1996) were first pointed to the status of cryptosporidiosis in children in Basra. In Baghdad, a prevalence rate of 6% with C. parvum was found (Al-Janabi, 2005), while in Arbil the rate of infection was 13.33% in children aged less than three years (Alsake, 2004).

2- Materials and Methods

A total of 250 stool samples were obtained randomly from in-patients and out-patients attending the Pediatric Teaching Hospital during the period 1st Jun. 2012 to 1st Sept. 2012. Questionnaire was organized to each patient. The population included in the present study was patients of 6 months to 12 years of age, complaining from diarrhea and abdominal pain.

All patient samples were obtained freshly and put in a dry, clean, sterile, and screw caped plastic container, and each container was labeled with number and name of the patient. Stool samples were divided into two parts: one portion was fixed and preserved in 10% formalin for direct wet mount using saline and iodine, and the other portion of stool sample was preserved without formalin, as frozen form for ELISA test, in the same time
of collection, each stool specimen was examined by the following techniques:

1- Microscopic examination: The colour, consistency, and presence of blood, mucus, ova and the parasites were recorded. Stool specimen was then inspected by using direct wet smear technique using saline and iodine solution for the presence of oocysts of Cryptosporidium (WHO, 1991).

A smear of stool specimen was prepared by an applicator stick, and spread by rolling the stick over the middle part of the slide. Left to dry then fixed with absolute methanol, by adding few drops (2-3 drops) and left to dry then stained with modified cold Zeihl-Neelsen (Fayer and Xiao, 2008). The slides then examined using the oil immersion lens (100X).

2- Fresh stool samples were then subjected to antigen detection for cryptosporidium using:

(Crypto Uni-Strip kit) from Coris Bio Concept C-1505 (Belgium).

3- Frozen stool samples were subjected to antigen detection for cryptosporidium using: (Cryptosporidium II ELISA kit) from Tech lab Cat No 30406 (USA).

Statistical Analysis was done for each returned questionnaire with SPSS (Statistical Package for the Social Sciences-version16.0) package software program for statistical analysis.

Descriptive statistics (numbers and percentage) were calculated for all variables, as well as analytical statistics was done to find the relations between the variables. The relation between variables was calculated by using the appropriate statistical tests by Chi-square.

3-Results: A total of 250 stool specimens were examined out of which 38 (15.2%) samples were positive for the oocysts of Cryptosporidium using modified Z-N staining (Figure 1).

![Figure 1: The rate of Cryptosporidium infection in Pediatric Teaching Hospital by MZN.](image)

Over all, the prevalence of Cryptosporidium infection in male and female was (15.5%) male and (14.8%) respectively, with no significant difference in the total rate of infection with Cryptosporidium between males
and females (p>0.05), there was a highly significant difference found between the rate of infection among the children of urban areas (13.3%) and children of rural areas (32%) (Table 1).

Children of (4 - 6 years) age group showed the highest (16.7%) rate followed by the age group of (6 month to 3 years) at a rate of (15.6%), then lowest rate of infection (13% and 12.5%) was among those of (7-9) and (10-12) years of age respectively, with a highly significant difference between the rate of infection and the age groups (Table 2).

From the type of stool samples it was found that 23 samples were loose stool with prevalence rate of (17.3%), while 8 (8.3%) of them were watery and 7 (33.3%) were soft type of stool samples with a significant differences among them (p<0.05) (Table 3).

Table (1): The number of examined sample and the rate of infection with Cryptosporidium according to the gender and place of children in Pediatric Teaching Hospital (n= 250).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Exam. samples</th>
<th>The Result of ZN test Positive for Cryptosporidium</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>142</td>
<td>22</td>
<td>15.5</td>
</tr>
<tr>
<td>Female</td>
<td>108</td>
<td>16</td>
<td>14.8</td>
</tr>
<tr>
<td>Place</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>225</td>
<td>30</td>
<td>13.3</td>
</tr>
<tr>
<td>Rural</td>
<td>25</td>
<td>8</td>
<td>32.0</td>
</tr>
<tr>
<td>Total</td>
<td>250</td>
<td>38</td>
<td>15.2</td>
</tr>
</tbody>
</table>

Table (2): The relationship between Cryptosporidium infection and the age of children.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Exam. samples</th>
<th>The Result of ZN test Positive for Cryptosporidium</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5-3</td>
<td>167</td>
<td>26</td>
<td>15.6</td>
</tr>
<tr>
<td>4 – 6</td>
<td>36</td>
<td>6</td>
<td>16.7</td>
</tr>
<tr>
<td>7 – 9</td>
<td>23</td>
<td>3</td>
<td>13.0</td>
</tr>
<tr>
<td>10 – 12</td>
<td>24</td>
<td>3</td>
<td>12.5</td>
</tr>
<tr>
<td>Total</td>
<td>250</td>
<td>38</td>
<td>15.2</td>
</tr>
</tbody>
</table>

Table (3): The number of examined sample and the rate of infection with Cryptosporidium according to type of stool

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Exam. samples</th>
<th>The Result of ZN test Positive for Cryptosporidium</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Type of stool</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watery</td>
<td>96</td>
<td>8</td>
<td>8.3</td>
</tr>
<tr>
<td>Loose</td>
<td>133</td>
<td>23</td>
<td>17.3</td>
</tr>
<tr>
<td>Soft</td>
<td>21</td>
<td>7</td>
<td>33.3</td>
</tr>
<tr>
<td>Total</td>
<td>250</td>
<td>38</td>
<td>15.2</td>
</tr>
</tbody>
</table>
From the microscopic examination it was found that using direct wet mount by saline and iodine, the oocysts appear as a small spherical bodies and their sizes were about the size of some fungi but can be differentiated from fungi by their shapes which were oval. Also, the oocysts of Cryptosporidium contain granules inside them, while in iodine preparation the oocyst were colorless with the appearance of sporozoites inside some of them. (Figure 2).

![Oocysts](image)

Figure (2): Oocyst of Cryptosporidium by direct wet mount (Iodine) with magnification 1000X.

Also from the results of using modified cold Ziehl-Neelsen stain the oocysts appear as small as 4µm, spherical in shape, stained with dark pink or red color against green background color. (Figure 3).

![Oocysts](image)

Figure (3): Oocyst of Cryptosporidium by Modified cold Ziehl-Neelsen stain with magnification 1000X.
The results of using the Crypto-Strip in *invitro* diagnostic test showed two red lines for positive samples while the negatives were with one red line only seen on the strips (Figure 4).

![Figure (4): Positive Crypto-Strips which used for detection of *Cryptosporidium*.](image-url)

The result of using four methods in examination of 250 stool samples recorded that the higher rate of infection was 15.2% by modified cold Ziehl-Neelsen stain then came direct wet mount method with prevalence rate of 13.6%, while by using ELISA test it was 6.8% and Crypto-Strips method 4.4% (Table 4).

<table>
<thead>
<tr>
<th>The tests</th>
<th>No. of examined</th>
<th>The Results No. of Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No.</td>
</tr>
<tr>
<td>Ziehl –Neelsen stain</td>
<td>250</td>
<td>38</td>
</tr>
<tr>
<td>Direct wet mount</td>
<td>250</td>
<td>34</td>
</tr>
<tr>
<td>ELISA test</td>
<td>250</td>
<td>17</td>
</tr>
<tr>
<td>Crypto-Strips method</td>
<td>250</td>
<td>11</td>
</tr>
</tbody>
</table>

3-Discussion

The results of the present study recorded a total prevalence rate of 15.2% for *Cryptosporidium* infection in children attending the Pediatric Teaching Hospital in Sulimani city. This indicates that Sulimani city is endemic with this parasite, the endimicity may be due to contaminated food and water with the oocysts of this parasite. This rate was higher than those recorded in Diala by AL-Ta'ey (1997) and in Basra by Mahdi and Ali (2002).

The prevalence rate also was higher than those reported from some neighboring countries such as those reported by Nemri and Hijazi, (1994), Iqbal et al. (2001), Dabirzadeh et al. (2003) and Mohammadi et al. (2006), this may be due to: number of patient's samples in different screening studies, differences in the nature of the areas, age of patients, diagnostic methods used, living conditions, socioeconomic criteria, nutritional status, immunological status, personal hygiene and the variation of temperature between the seasons in different locations.

The data also showed no significant difference between males (15.5%) and females (14.8%) infection with C. parvum, although the rate of infection in males was higher than females. This may be attributed to that boys at this age possibly are more exposed to C. parvum oocysts because of their more activities than the girls. This result agrees with the results of Mumtaz et al. (2010) and El-Helaly et al. (2012) in Egypt, but it disagrees with the results of the studies that were carried out in Kenya by Gatei et al. (2006) and in Iran by Khalili and Mardani (2009).

According to the children's residence, a significant difference was found in the prevalence rate between children in rural areas (32%) and those in urban areas (13.3%). This may be attributed to increased exposure to zoonotic infections, low socioeconomic standard and close contact with animals and soil which appears to be contributing factors that increase the risks infection with C. parvum in rural area (Youssef et al., 2008). This agree with Rahouma et al. (2011) and El-Helaly et al. (2012). This also may related to risk of exposure to contamination from their environment (food, water and toys) and the lack of self-awareness, hygienic behavior and \ or contracting the infection from their household (Ben et al. 2002). This result was similar to that reported by Guy et al. (2001), and in accordance with results of Maleki et al. (2005); Khalili et al. (2006) and Mohammadi et al. (2006).

It was found that out of 38 positive samples, (33.3%) were soft stool, (17.3%) were from loose stool sample, and (8.3%) were watery stool, this may be because of that the patient of watery diarrhea immediately received treatment after attending the hospital (esp. children) before stool examination. Current results may showed that stool texture isn't direct evidence of infection; in the epidemiological status of this disease.

The results of using wet mount preparation with Lugol’s Iodine stain showed that C. parvum oocysts do not stain with iodine and appear as transparent discs (Mahgoub et al., 2004); this may be due to their thick cell
wall that resists staining with iodine because the thick-walled oocysts are only shedding with the stool.

The data of comparing the four methods used in detection of Cryptosporidium that ZN method showed a high sensitivity rate in detection oocysts, this may be due to the physical and biochemical characteristics of oocysts that depend on storage conditions, which may affect detection (Inoue et al., 2006). Staining techniques are commonly used but may be less suitable if oocyst structure is affected, as in case of frozen samples (Ward and Wang, 2001), the low rate of infection using ELISA and Crypto-Strips method may be because of the factors that affected the detection of C. parvum infection by both ELISA and Crypto-Strips method such as type of kits and the differences of species strains, genotypes, and subtypes used in the kits preparation. The lowest rate reported in this study may be due to using few amount of the stool, one loop for formed stool and two loops for liquid stool samples in the case of Crypto-Strips method and dilution of stool in the case of ELISA which may not be adequate for carrying enough number of the oocysts to be detected especially when few numbers are present in the specimens. This agree with the results recorded by Weitzel et al. (2006) and Tabash (2009) and disagrees with the results of El-Sweify (2011) who recorded similar efficacies for comparison of an acid-fast stain and ELISA and this may be due to the high sensitivity of ELISA test and the low antigens found in the stool because of dilution.

References:

Khalili, B.; Shahabi, G.h.; Besharat, M.; Mardani, M.; Cuevas, L. and Hart.

