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Abstract 

  The nature of the principle of equivalence is explored. The light ray 

travel path in an accelerated reference frame, a rocket ship, is described and 

the rocket ship model is used to derive the deflection of light by a massive 

body. By accounting for the effect of the velocity of the accelerated observer 

relative to an inertial frame, the additional deflection angle is obtained due to 

the aberration of the light beam. This model is applied to the deflection of light 

by a central gravitational field, giving the total deflection angle in agreement 

with the standard result. Also, a novel approach is given by considering the 

deflection of light by a massive body to obtain the precession of the perihelion 

of a planet. 

 
Keywords: Equivalence principle, Light deflection, Perihelion advance 

 

Introduction 

The deflection by the Sun of light from a distant star is explored within 

the principle of equivalence. An accelerated system, a constantly accelerating 

rocket ship, is setup equivalent to the gravitational acceleration of the Sun. 

The path of a beam of light is analyzed. We show that including the effect of  

light aberration due to motion of the observer, the deflection in the rocket ship 

can duplicate the deflection of light passing through the gravitational field of 

the sun. Then, by taking into account the aberration of light, the problem of 

the light beam grazing the Sun is resolved and the standard value is obtained. 

We also consider the advance of the perihelion of a planetary orbit by the 

deflection of light relative to the orbit, deriving the standard formula. 

 

Lorentz and Rindler transformations 
A rocket ship accelerates at a uniform rate a relative to a stationary 

inertial system O' having coordinates x', y', z', t'. The acceleration is along the 

x' axis of O'. Let O be the accelerating coordinate system for the rocket ship 
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having coordinates x, y, z, t. Assume the axes x', y', z' and x, y, z are parallel, 

respectively between O' and O and that the times t' and t are synchronized at t' 

= t = 0 when their origins intersect at zero velocity.  

We use the Lorentz equations for transformations between inertial 

frames O' and O'' having coordinates x'', y'', z'', t'' with spatial coordinates 

respectively parallel between O'  and O'' and clocks synchronized at t' = t'' = 

0, moving at relative velocity v, the transformation equations given by 

 

x ' '= γ ' (x'− v t ' ),                                              (1) 

c t ' ' = γ '(c t '−
v x '

c ),

                                        (2) 
y ' '= y ' ,                                                            (3) 
z ' ' = z ' ,                                                              (4) 

 

where 

 

γ '=
1

√1− v2/c2
.

                                                 (5) 

 

The inverse Lorentz transformation equations are given by 

 
x '= γ ' (x ' ' + v t ' '),                                            (6) 

c t '= γ '(c t ' '+
v x ' '

c ),

                                     (7) 
y ' = y ' ' ,                                                             (8) 

 
z '= z ' ' .                                                             (9) 

We will also use the Rindler coordinate system   (Knorr, 2010) to transform 

between stationary inertial frame O' and frame O having constant acceleration 

a with respect to O' , given by 

 

x=√(x '+
c

2

a )
2

− c
2
t '

2
−

c
2

a
,
                              (10) 

ct=
c

2

a
artanh(

c t '

x ' + c
2
/a

) ,
                                 (11) 

y= y ' ,                                                                (12) 
z= z ' .                                                                 (13) 
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The inverse transform, from O to O' is given by 

 

x '= ( x+
c

2

a
)cosh(

a t

c
)−

c
2

a
,

                              (14)     

c t '= ( x+
c

2

a
)sinh (

a t

c
) ,

                                    (15) 
y ' = y ,                                                               (16) 
z '= z.                                                                 (17) 

 

In the stationary inertial frame O', the trajectory of a fixed point in O is seen 

as a hyperbola given by 

 

x '
2
+ y '

2
+ z '

2
− c

2
t '

2
= ( x+

c
2

a
)

2

+ y
2
+ z

2
,

        (18)           

 

where x, y and z are the coordinates of the fixed point in the accelerated frame. 

The velocity v of the rocket ship frame O relative to O' at time t' is given by, 

 

v=
a t '

√1+ a
2
t '

2
/c

2
,

                                             (19) 

 

where c is the speed of light in vacuum and the rocket ship has a velocity v=0 

at t' = 0. 

 

Propagation of light in an accelerated system 
In a rocket ship O, a light pulse generator A is on a pedestal at height 

x = k and position y = d.  

At position y = 0, there is a 

vertical assembly of light pulse detectors AL  extending in the x direction from 

x = 0 to height x = k,  

as shown in Figure 1. Assume that the clocks in O and O' are all set to t = t' = 

0 when the velocity of the 

rocket ship is v = 0 with respect to O'. Assume that at time                                                                   

 
t= t1= 0                                                              (20) 

 

on A's clock in O, which corresponds to t' =  t'1  =  0 on the clock at the origin 

of  O', a pulse of light  
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is emitted from A at an angle of p0 with respect to the vertical x direction and 

is directed toward the vertical assembly of detectors at y = 0. The 

instantaneous velocity of the rocket with respect to O' at time  

t'1 = 0 is  

 
v= v1= 0                                                             (21) 

 

by (19).  The light pulse is received on detector AL  at height x at time t2   on 

AL 's clock at a vertical distance h below and d to the left of the emitter at A. 

The distance d, the lateral dimension of the rocket ship perpendicular to the 

direction of acceleration. At the time t2 , the time in O' is t'2  and the 

instantaneous velocity of the rocket is given by (19),  

 

v2=
a t ' 2

√1+ a
2
t ' 2

2
/c

2
.

                                            (22) 

 

By the Lorentz transformation, the clock at AL of coordinate system O which 

is moving instantaneously at velocity v2  with respect to O', as observed in the 

inertial system O'' which is moving at constant velocity v2 with respect to O' 

and by which the accelerated system O is instantaneously at rest, the time in 

O'' and thus O is given by                                                 

 
t2= t ' ' 2= γ t ' 2 ,                                                   (23) 

 

where γ  is given by (5), 

 

γ=
1

√1− v2

2
/c

2
.

                                                  (24)               

 

Relative to the rocket ship frame, which has a velocity v(t') given by (19), 

the light ray falls a distance h in O as observed in frame O'' moving at velocity 

v2  with respect to O' so that O is seen to be momentarily at rest, is given by 

 

h=∫
0

t2

v (u)du=
c

2

a
∫
0

t2

a u/c

√1+ (a u/c )2
du=

√1+ (a t 2/c)2− 1

a /c2
,

  (25) 

 

where the coordinates of O and O'' are x = x'', t = t'', y = y'' and z = z''.         

Substituting from (23), t2 = γ  t'2 into (25) and assuming that a γ t'2  < < c yields 
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h=
√1+ (a γ t ' 2/c )

2
− 1

a /c
2

≈
a γ

2
t ' 2

2

2
.

                    (26) 

 

From Figure 1., assuming propagation approximately in a straight line, the 

distance g traveled by the light pulse between emission at A and detection at  

AL  is given by Pythagoras' theorem,  g
2
= d

2
+ h

2
, which can be written as 

 

g= d√1+
h

2

d
2
.

                                                   (27) 

 

 
Figure 1. Rocket Ship in frame O accelerating at rate a with respect to inertial frame O'. 

 

Since the initial times t'1 = t 1  = 0, the time interval t2 of travel of the 

light ray in O is given by (23), where the time t'2  in inertial frame O' for the 

light pulse to travel in a straight line the distance d in vacuum is given by                                                                           

 

t ' 2=
d

c
.

                                                              (28) 

Substituting (28) into (27), g is given by 

 

g≈ d√1+ (
γ

2
ad

2c
2

)
2

≈ d (1+
γ

4
a

2
d

2

8c
4

) .

              (29) 

 

Deflection of light in the accelerated system 
From Figure 1., the light beam is incident at the reception point AL at 

an angle α  given by 
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tan (α )=
h

d
≈

a γ2
t ' 2

2

2d
=
γ 2

a d

2c
2

,

                         (30)    

 

which yields                                                   

 

α≈ arctan(
γ

2
a d

2c
2

) .

                                           (31) 

 

Now, because the detector at point AL in frame O has a velocity v2  with respect 

to stationary inertial system O' at the time of reception of the light pulse, then 

relative to inertial frame O'' also moving at velocity v2   with respect to O'  in 

which accelerated system O is temporarily at rest when the light pulse 

arrives,the apparent angle q of the incoming light pulse with the vertical x axis 

as seen by the observer in O'' is determined by the aberration of light 

(Bergmann, 1976), which is given by 

 

tan (q)=
sin(w)

γ (cos(w)− v2/c)
                                (32) 

where                                                                                      

 
w= p− α ,                                                          (33) 

 

and p  (see Figure 1.) is the initial angle of transmission of the signal. The 

observed angle of deflection θ is given by  

 
θ=π/2− q.                                                         (34) 

 

This implies that  

 

tan (θ)= tan(π/2− q)=
1

tan (q)
.
                        (35) 

 

From (32) this gives                                           

 

tan (θ)=
γ (cos(w)− v 2/c)

sin (w)
.

                               (36) 

 

Deflection of light in the accelerated system calibrated to a massive body 



European Scientific Journal May 2018 edition Vol.14, No.15 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 

541 

The deflection of a ray of light incident on a massive body such as a 

star is well known (Einstein, 1952), with the total angle of deflection given by  

θE  = 4 G M / R2 ,  where G is Newton's gravitation constant, M is the mass of 

the star and R is the impact parameter, the closest distance of approach of the 

incident light ray to the center of the star. Our aim is to obtain this deflection 

amount to first order in v/c in the rocket ship analogy.  

To this end, we apply the concept of the equivalence of an inertially 

accelerating system to the gravitational system of the star. We anticipate this 

will not be symmetrical in the sense that a star has a centrally varying field 

where as the rocket ship has a constant field. From the rocket ship model of 

the previous section we make the following definitions. Assume that the 

acceleration of the rocket ship is 

 

a=
G M

R
2

,

                                                          (37) 

 

and that the width of the rocket ship has the value 

 

d =
8 R

3
.

                                                             (38) 

 

From (28) and (38) we get 

 

t ' 2=
d

c
=

8 R

3c
.

                                                    (39) 

 

Then from (22), (37) and (39) the velocity of the rocket ship frame O at the 

time of detection t2  of the light pulse at AL  is given by      

 

v2≈
8G M

3c R
.

                                                      (40) 

 

Setting the initial transmission angle to p  = -π / 2, we have from (31) and (33) 

 
w=− π/ 2− α ,                                                   (41) 

 

where 

 

α≈ arctan(
4 γ

2
G M

3c
2
R

) .

                                     (42) 
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The angle of deflection is θ. Using (36) with (41) gives us 

 

tan (θ)=
γ [cos(− π/2− α )− v2/c ]

sin(− π/2− α)
=
γ [sin (α)+ v2/c ]

cos(α )
.

             (43) 

 

Substituting for v2 and  α  from (40) and  (42) into (43) we obtain 

 

tan (θ)≈
γ {sin [arctan(γ

2
β/ 2)]+β }

cos [arctan(γ
2
β/2)]

,

              (44) 

 

where  

 

β=
v2

c
≈

8G M

3c
2
R

.
                                                (45) 

 

For the Sun,  (4/3) G M / c2 R ≈ 3 x 10-6   and  γ ≈ 1,  so we can make a first 

order approximation to (44) which gives us 

 

θ≈ γ (γ
2
/2+ 1)β≈

4G M

c
2
R

,

                              (46)   

 

which equals the standard value θE given above. For the rocket ship frame O 

being equivalent to the Solar gravitational system we have acceleration a = 

2.741 x 104  cm s-2 , width d = 1.856 x 1011 cm, total time t'2 = 6.191 s,  and 

velocity at detection time v2 = 1.697 x 105  cm s-1 . Also, β = v2 / c = 5.661 x 

10-6  and γ  = 1 to ten decimal places. For the total deflection  (46)  we get 

angle θ = 8.491 x 10-6  rad. = 1.751 arcsec. 

 

The deflection of light by a central gravitational field 
By the equivalence principle, we should be able to apply the 

accelerated frame analogy of the previous section to the real case of a centrally 

directed gravitational field such as a massive star. The light ray from a distant 

source is deflected radially toward the center of the star as it passes by, 

acquiring a velocity perpendicular to its original line of approach. Construct 

an xy coordinate system originating at the center of the star, with the light ray 

traveling from the negative to positive direction and initially parallel to the y 

axis (Wortzman, 2014). Let the velocity of the light ray be v  =  vx êx   +  vy êy   
where êx  and  êy are unit vectors along the x and y directions respectively, and 

vx = 0 and vy  = c initially.  The x axis of the coordinate system intersects the 
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point of closest approach of the light ray at x = R. The radial distance r of the 

photon from the center of the coordinate system makes the angle φ with the 

positive x axis. 

The acceleration ax   in the êx direction due to the star's gravity upon the photon 

at position r=√y2+ R2

 is given by 

 

a x=
− G M cos(ϕ)

y
2+ R

2
,

                                          (47) 

 

 

where cos(ϕ)= R/√y2+ R2 .  The velocity dvx  in the êx direction is given by 

dvx = ax dt = ax  dy / c, where dy / dt = c is the velocity of light in the  êy 

direction. Then the velocity vx is obtained by integrating (47) over all y,                                    

 

v x= ∫
− ∞

+ ∞ − G M R

( y
2+ R

2)3/2

dy

c
=
− 2G M

c R
.

                    (48) 

 

In this case, from (30), tan(α) = Δx / Δy = (vx Δt) / (vy Δt) = vx / vy , for some 

suitable time interval  Δt. 

With  vy  = c, we have from (48) the angle of deflection α  given by 

 

tan (α)=
vx

v y

=
− 2G M

c
2
R

.
                                    (49) 

 

But we know α  is only half the deflection angle ( by θE  above.)  However, 

from our experience with Einstein's rocket ship, we realize that the light beam 

is moving at a velocity vx  in the êx  direction,which means that there will be 

an aberration effect when the light ray is observed at a large distance y from 

the star. Then the total deflection of the light beam is given by (43) 

with  γ = 1 and v2  = -vx , 

 

tan (θ)=
sin(α )+ v x /c

cos(α )
≈

2v x

c
,

                          (50) 

 

where, since α  is small, sin(α) ≈  α  = vx  / c and    cos( α) ≈  1.  And, since  

tan(θ) ≈  θ for small θ, substituting from (49) into (50) and taking the absolute 

value, we get the expected result                            
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θ≈
4G M

c
2
R

.

                                                        (51) 

 

 

Precession of the orbital perihelion 
Assume that a ray of light from a distant source interacts with a star of 

mass M at a closest distance of R = 4 r / 3 from the center of the star, where r 

is the radial coordinate of the elliptical orbit of a satellite around the star. Using 

the result from the previous section, the deflection of the light ray can be 

expressed by (51)  

 

θ=
4G M

c
2(4r /3)

=
3G M

c
2
r                                        (52) 

 

when observed at a large distance from the star. With r = L / [ 1 + ε cos (φ) ] 

into (52), the deflection of the light ray approaching as close as R = 4 r / 3 to 

the star is given by 

 

θ=
3G M

c
2

[
1+ ϵ cos(ϕ)

L
] ,

                                  (53) 

 

where φ  is the angle that r makes with the line through the points of perihelion 

and aphelion, ε  is the eccentricity of the ellipse and L = a (1 -  ε2 ) is the semi-

latus rectum with a the semi-major axis. Multiplying (53) by dφ and 

integrating between 0 and 2 π gives the total deflection of all the light rays 

which impact the star at distances of 4/3 of the elliptical orbit, yielding 

 

δψ= ∫
0

2π

θd ϕ=
3G M

c
2
L
∫
0

2π

[1+ ϵcos(ϕ)]d ϕ=
6πG M

c
2
L

.

             (54) 

 

By Kepler's third law, G M = 4 π2 a3  / T2   where T is the period of the elliptical 

orbit. Substituting this into the right hand side of (54) yields Einstein's result 

(Einstein, 1952), 

 

δψ=
24π

3
a

2

c
2
T

2
(1− ϵ

2
)
.

                                            (55) 

 

For planet Mercury, with a ≈  0.387096 AU,  T ≈  0.24085  yr,  ε ≈ 0.205622 

and c ≈ 63245.98646 AU yr-1 ,  (55) gives a perihelion advance of  δΨ ≈ 0.4297  

''  yr-1 , which agrees with the observed result. 
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Conclusion 
It is satisfying to know that special relativity and Newtonian mechanics 

can address light deflection and perihelion precession in a straight forward 

manner. Aberration seems to play a key role in the interaction of gravity and 

light. Although we have not shown it, Newtonian mechanics can also explain 

the gravitational redshift, by attributing mass to light, and even the expansion 

of the universe, though not the accelerated expansion. And our analysis of  

light deflection also explains gravitational lensing, another cosmological 

effect. The three tests for general relativity theory, light deflection, 

gravitational red shift and precession of Mercury's perihelion, would seem to 

be already covered by the earlier theories, though it may not have been realized 

at past times. 
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